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Anisotropy of crystal structure leads to complications in mechanical behaviour. Robert
Cahn, 50 years ago, made valuable contributions through determination of crystallographic
features of plastic deformation in large crystals in polycrystalline α-uranium. This research
area has become increasingly linked with the effects of internal and external stresses on
many materials in polycrystalline form comprised of grains with anisotropic crystal
structure. The extent of irreversibility of deformation when such materials are subjected to
thermal cycles leads to the significance of crystallographic textures but major effects on
mechanical behaviour are often apparent where grains are randomly aligned without
preferred crystal orientation when small external stresses are imposed. The importance of
these features, their main characteristics and their analysis are briefly reviewed
C© 2004 Kluwer Academic Publishers

1. Introduction
The crystallographic nature of slip and twinning has
long been recognised [1]. Extensive knowledge has ac-
cumulated firstly through surface observations on sin-
gle crystals coupled with X-ray determinations of their
crystal structure and orientation. For more complex
structures such work becomes more difficult, especially
in materials subject to solid-state phase transformations
when single crystals of widely varying orientations are
difficult to grow [2]. The latter situation is typified by
studies on α uranium. Only a short time after the crystal
structure of this element (Fig. 1) at room temperature
was finally agreed upon, Cahn [3, 4] presented impres-
sive results from his studies of its deformation modes.
His work, in fact, relied on observations on large grains
within polycrystalline samples but his conclusions were
substantially supported by studies on single crystal ma-
terial [5].

A feature of Cahn’s work was his noting that ex-
tensive slip could be induced by repeated thermal cy-
cling of the large grain material between room temper-
ature and 635◦C. This arose through the stresses caused
by differential thermal expansion between the adjacent
grains. Though this aspect was not central to the work
that Cahn was then undertaking, it has subsequently
proved to be of major significance. The phenomenon
can be linked with earlier surface observations by Boas
and Honeycombe on several other thermally cycled ma-
terials with anisotropic crystal structures that provided
evidence that slip had been induced [6–8].

Through such studies, it has become apparent that
crystal anisotropy must be linked to the generation of
internal stresses and, in consequence, opened up new
areas of concern.

2. Thermally induced stresses
When the thermal expansion of each grain is orienta-
tion dependent then a change of temperature must lead
to the development of internal stresses in the polycrys-
talline material if adjacent grains are to remain in con-
tact without any separation. Crystals of cubic symmetry
are immune from this situation for, although their atom
spacing varies along different non-axial directions, their
thermal expansion coefficients are independent of ori-
entation. This can readily be seen because each of the
3 orthogonal axes is identical and so the precise cubic
shape is retained as the lattice expands or contracts.

In mathematical terms, the thermal expansion coeffi-
cient is defined by a second rank tensor αij such that the
strain εij induced by a temperature change �T is given
by εij = αij�T . It follows [9], for any crystals whose
unit cell axes are unequal or non-orthogonal, that their
thermal expansion will be orientation dependent.

The extent of the variation of thermal expansion with
orientation differs substantially between different ma-
terials [6]. This is important in determining the level
of internal stress that may be induced. Here, we are
also concerned with the values of the elastic moduli
that are themselves orientation dependent. Their orien-
tation dependence is of different character from that of
the thermal expansion coefficients for they are governed
by the strength of directional bonding without geomet-
rical constraint. This implies that even for cubic crystals
with 3 equal and orthogonal unit cell axes, their elas-
tic moduli, but not their thermal expansion coefficients,
can vary in the intermediate directions. Such polycrys-
tals are thus immune to thermal stresses and so do not
come under consideration here. Mathematically, in the
general case, the elastic moduli must be defined by
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Figure 1 The crystal structure of α-uranium. The unit cell, marked with
bold lines, is orthorhombic and the crystallographic directions are indi-
cated.

fourth rank tensors Eijkl such that the generalised elastic
stress-strain relationship takes the form σij = Eijkl εkl.
We shall not explore further the detailed significance of
these features but it is important to appreciate that, for
complete analysis, extensive experimental data that has
provided values of these parameters must be taken into
account. The full application of such an approach still
presents formidable difficulties. The crystallographic
dependence of deformation modes and of temperature
dependent stress relaxation add further complications.

Nevertheless, it is possible to gain some impression
of the magnitude of internal stress generation by taking
a value for �α that is some fraction, typically about
0.5, of the difference between the largest and small-
est thermal expansion coefficients. An averaged value
of Young’s modulus E over the temperature range in
question is a further simplification that may be made,
providing, the inaccuracies of such an approach through
the factors previously mentioned are born in mind.
In applying these simplified considerations, α-uranium
(Fig. 1) forms an example. There are temperature de-
pendent and relatively large thermal expansion coeffi-
cients in the [100] and [001] directions, each of average
value about 3×10−5 per deg · K and a smaller, but neg-
ative thermal expansion coefficient of about −6×10−6

per deg · K in the [010] direction.
Taking approximate values of �α ≈ 2 × 10−5 per

deg · K and E ≈ 2×1011 Pa, then a temperature cycle of
only ±10 degs · K will induce a stress of ≈80 MPa. The
induction of such a stress level may exceed the elastic
limit of the material thus causing plastic deformation
to occur within the grains. It must be noted further that
the magnitude of the elastic limit is not easy to define,
for it may be time dependent as well as influenced by
the precise form of the stress that is generated.

Where the material has preferred orientation, temper-
ature cycling may cause significant permanent change
of shape because the plastic deformation that is caused
in each individual grain is not entirely reversible [10].

Thus a form of ratchetting takes place with each ther-
mal cycle inducing a particular increment of distortion.
With many repeated thermal cycles this distortion can
be considerable as illustrated in Fig. 2, but its extent
can be modified by heat treatments that alter the crys-
tallographic texture.

In a purely randomly oriented polycrystalline mate-
rial not externally stressed, thermal cycling may have
only a small external manifestation if the grains have
sufficient plasticity under the complex internal stress
system. The principal observation is the wrinking of
the surface grains, effectively creating surface oscilla-
tions with a wavelength similar to the grain size [11].
The origin of this process lies in the occurrence of slip
and of twinning, as Cahn identified [3], in the free ex-
posed surfaces of the grains that eventually leads to
their distortion.

So far we have only considered material that is
unstressed externally. Highly important additional as-
pects arise if the material is subjected to external
loading and the main features of these will next be
considered.

3. The effects of external stress
If we consider a randomly oriented polycrystal under
a small tensile load at constant temperature, the stress
will initially be resisted by purely elastic deformation.
With a sufficiently large change �T in temperature a
situation will be reached when E�α�T induces an
internal stress level that exceeds the yield stress σy of
the material. Then the stress resistance will no longer
be accommodated elastically so the initial increment of
elastic strain is converted into a plastic strain of sim-
ilar magnitude. A reversal of temperature will have a
comparable effect. Clearly, a precise analysis of this
phenomenon would be highly complex but results de-
rived from the simple analysis outlined have proved
remarkably close to practical observations. The origins
of this approach lay in Cottrell’s far-sighted percep-
tion [12] and interpretation of the enhanced creep (more
appropriately referred to as “pseudo creep” because it
is not directly related to time) of α uranium subject to
neutron irradiation. In the original analysis, the inter-
nal stresses are not caused by temperature changes but
by the crystallographic dependence of the precipitation
of vacancies and intersticials created during the fission
process. A thermal neutron flux causes an irradiation
growth rate ε̇g in the [010] direction of an unrestrained
α-uranium single crystal [13] leading to a strain ε̇gt in
time t, where the grain is contained within a polycrystal
this results in an internal stress E ε̇gt so the time taken to
reach the yield stress σy is σy/E ε̇g. In this interval, the
initial elastic strain σ/E produced by an external stress
σ becomes a plastic strain ε̇p. This strain increment
is continually reproduced as long as the irradiation is
maintained so inducing a pseudo creep process at a rate
ε̇p ≈ (σ/E)/(σy/E ε̇g) ≈ ε̇gσ/σy. The rate of strain
produced by this mechanism can substantially exceed
the normal creep rate of the material at a similar tem-
perature and stress and this enhancement is greater at
lower stresses and mean temperatures.
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Figure 2 The effect of 850 thermal cycles between 50◦ and 600◦C on α-uranium bars 25 mm in diameter, originally smooth and of equal length [10].
The different extent of their distortion is due to differences in preferred orientation arising from their mode of fabrication and heat treatment. From
left to right, the bars were respectively, (1) as cast, (2) hot rolled, (3) cold swaged, (4) annealed in the β phase at 700◦C and (5) quenched from the
β-phase.

There is a close analogy between the process de-
scribed and the effect of internal stress arising from
thermal cycling. If the yield stress σy is reached by a
change of temperature �T such that �α�T ≈ σy/E ,
the increment of strain caused by an external stress σ

becomes a plastic strain ε̇p so that ε̇p ≈ �α�T σ/σy.

Considerations of this kind have raised further ques-
tions. One of these concerns the influence of thermal
cycles sufficient only to cause intergranular stresses that
are below the yield stress. Fortunately, this situation has
proved amenable to analysis that has again been sup-
ported by experimental results [14–16].

In the foregoing discussion, a specific value of the
yield stress σy has been presumed Its magnitude, how-
ever, becomes less definite at elevated temperatures
where relaxation processes occur at increasing rates.
It is then more appropriate to consider the effect of
conventional creep processes in which the creep rate
generally varies with stress raised to some power n.
Under multi-axial stresses, this can be coupled with the
Levy-von Mises equation [17] to take the form

ε̇xx/σ
′
xx = ε̇yy/σ

′
yy = ε̇zz/σ

′
zz = γyz/τyz = γ̇zx/τ̇zx

= γ̇xy/τxy = AI n−1. (1)

where ε̇xx, etc. are the tensile creep rates in the direc-
tions indicated and γ̇yz, etc. are the shear components

of the creep rates under the shear stress components
τyz etc. σ ′

xx, σ ′
yy and σ ′

zz are the deviatoric stresses, that
is, the tensile stresses σxx,σyy and σzz in the respective
directions minus the hydrostatic component of stress
such that

σ ′
xx = σxx − (σxx + σyy + σzz)/3

= (2/3)[σxx − (σyy + σzz)/2]

I is the internal stress given [17] by

(2/3)I 2 = (σ ′
xx)2 + (σ ′

yy)2 + (σ ′
zz)2 + 2(τyz)2

+ 2(τzx)2 + 2(τxy)2

Complete analyses have not been attempted for the ap-
plication of these equations to the simultaneous pres-
ence of internal and externally applied stresses, though
satisfactory approximate solutions have been given [15]
for the case where an externally applied stress σex � I .
To illustrate the situation, a simplified analysis can be
presented as follows. If, in the x direction, a small ex-
ternal stress σex is applied at a level much less than an
internal stress σxx, then the first term of Equation 1 is
written ε̇xx/(σxx +σex)′. Now the internal stress in each
individual grain is such that σxx �= σyy �= σzz but for
the material as a whole, over all the grains, the internal
stresses must have no orientation dependence so that
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for their average values σyy = σzz = σzz. Thus

(σxx + σex)′ = σxx + σex − (σxx + σex + σyy + σzz)/3

= 2σex/3

It follows that σ ′
yy = −σex/3 and also σ ′

zz = −σex/3.
It is further noted that, making these substitutions in

Equation 1, that ε̇xx + ε̇yy + ε̇zz = 0 so matching the
requirement that volume is conserved during plastic
deformation.

The unit axial creep equation for the creep rate ε̇xx
subjected to a tensile stress σex in the presence of inter-
nal stresses now takes the form

ε̇xx = (3/2)I n−1σex (2)

In a more extensive analysis [15], the numerical factor
is found to be slightly influenced by the values of n
but differing from the above by no more than a few
percent.

More serious uncertainties arise from a lack of
knowledge of the effects of frequency and of wave form
of the temperature cycles. Nevertheless, if some aver-
age value of the internal stress I can be evaluated, it is
apparent from this that the acceleration of creep caused
by the temperature cycles is proportional to (I/σex)n−1

and is greatest when the external stress is small. For
example, when n = 3 and the external stress is 6 MPa,
frequent temperature fluctuations of only ±3 deg·K can
cause an acceleration of creep rate [16] which is more
than an order of magnitude greater than the creep rate
at constant temperature.

4. The effects of crystal anisotropy
on ductility

Our discussion so far has dealt with essentially pure
single-phase materials. Different phases have different
properties that can substantially influence behaviour.
Small particles, even at low concentrations, can cause
problems. The degree of cleanliness of a material, the
number, size and shape of inclusions can be influen-
tial. Even in materials without preferred textures these
can be responsible for thermally induced stresses but
where grain anisotropy also exists, the overall effects
can be much enhanced. An early manifestation of dam-
age to a material on thermal cycling lies in the internal
stress generated nucleation of voids around the inclu-
sions [18]. This can be non-destructively detected at
an early stage by determinations of changes in density.
Further , thermal cycling can cause these voids to grow,
eventually linking up to form cracks, seriously deteri-
orating the mechanical properties.

In complete contrast to such effects however, it is
significant that some beneficial features of the gener-
ation of internal stresses have been noted [19]. These
arise essentially from the modified form of the rela-
tionship that is generated between the strain rate and
the external stress applied. Where there is a low de-
pendence of strain rate on applied stress, that is when
n is small, then it has long been known that there is
only very slow development of a neck during tensile

deformation with consequent enhancement of ductility.
This can easily be appreciated by noting that the tensile
stress σ = F/A where F is the force perpendicular
to an area A. It has become conventional [20] in this
case to write the Norton equation as ε̇ = K (F/A)1/m

and, to preserve constant volume, ε̇ = −dA/A dt so
− dA/dt ∝ A1−1/m. It follows that dA/dt is indepen-
dent of A when m = 1. This implies that the rate of
reduction of cross sectional area is independent of the
size of the area. Thus, deformation is not concentrated
in the region of smallest cross section with the conse-
quence that necking is delayed and ductility enhanced
[20]. A dramatic early demonstration [21] of this effect
is illustrated in Fig. 3.

Figure 3 The superplastic behaviour of α-uranium (without preferred
crystal orientation) with and without thermal cycling under external
stress is illustrated. The specimen on the left, under a tensile stress of
16 MPa at 600◦C, fractured after 55% elongation. In contrast the centre
specimen has been subjected to the same stress but with thermal cycles
between 400◦ and 600◦C superimposed at a rate of one cycle per hour. A
tensile ductility of 430% has been achieved [21]. The original specimen
size is illustrated on the right.
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It has been noted earlier that the presence of internally
generated stresses simultaneously with the application
of an external stress at elevated temperatures leads to
a linear dependence of strain rate ε̇xx on the applied
stress σex as in Equation 2. Thus the superimposition of
thermal cycles during mechanical working under low
stresses enhances the ductility of material with crystal-
lograhically anisotropic grains [22]. This feature can be
utilised in superplastic forming to create specific shapes
by relatively simple mechanical operations. The poten-
tial opportunities for such practical applications have
been extensively reported.

5. Conclusions
Anisotropy of crystal structure in polycrystalline ma-
terials leads to a features that are absent in mate-
rials with isotropic structures. α-uranium typifies an
anisotropic structure with notably large difference in
its thermal expansion coefficients between the [001]
and [100] and the [010] directions. Thermal cycling in-
duces large internal stresses in polycrystals, sufficient
to cause deformation that is manifest as slip and twin-
ning on free surfaces, that enabled Cahn [3, 4] to elu-
cidate the crystallographic features of the deformation
modes. Linking these with the earlier observations of
Boas and Honeycombe [6–8] on different materials has
led to increasing realisation of the importance of crystal
anisotropy in the generation of internal stresses. With
these, the significance of preferred orientation in in-
fluencing distortion in materials without external stress
becomes apparent. When external stresses are superim-
posed mechanical behaviour is greatly affected, espe-
cially in materials without preferred texture. The anal-
ysis of such situations is facilitated by the approach
first proposed by Cottrell [12] to explain the enhance-
ment of creep rate by the internal stresses generated by
neutron irradiation. Temperature fluctuations produce
analogous effects and the enhancement is greatest when
the external stress is small in comparison to the internal
stresses. This feature is connected with the reduction
of stress sensitivity of the strain rate that can reach the
situation where these two parameters are linearly re-

lated. The ductility of the material is then substantially
increased because of the delay in necking and this has
opened up potential areas for practical exploitation [22].
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